
Pyomo Developer Guide 3.1 i

Pyomo Developer Guide 3.1

Pyomo Developer Guide 3.1 ii

COLLABORATORS

TITLE :

Pyomo Developer Guide 3.1

ACTION NAME DATE SIGNATURE

WRITTEN BY William E. Hart December 31, 2015

Pyomo Developer Guide 3.1 iii

Contents

1 Overview 1

2 Porting Pyomo to Python 3.x 2

2.1 Different Types . 2

2.2 Printing . 2

2.3 Exception Management . 3

2.4 Importing . 3

2.5 Managing API Changes with six . 4

3 Pyomo Library API 5

3.1 Introduction . 5

3.2 Declaring Pyomo Functors . 5

3.3 The Functor Registry . 7

3.4 Functors and Workflow . 8

3.5 API Notes . 8

4 Pyomo Functor API 10

4.1 pyomo.model Functors . 10

4.1.1 simple_preprocessor . 10

4.2 pyomo.repn Functors . 10

4.2.1 compute_ampl_repn . 10

4.2.2 compute_canonical_repn . 11

4.3 pyomo.script Functors . 11

4.3.1 apply_optimizer . 11

4.3.2 apply_postprocessing . 11

4.3.3 apply_preprocessing . 12

4.3.4 create_model . 12

4.3.5 finalize . 12

4.3.6 process_results . 13

4.3.7 run_command . 13

4.3.8 setup_environment . 14

Pyomo Developer Guide 3.1 iv

5 How To Run Tests 15

5.1 Running Smoke Tests . 15

5.2 Interpreting Output . 15

Pyomo Developer Guide 3.1 1 / 15

Chapter 1

Overview

This overview chapter outlines the book.

Pyomo Developer Guide 3.1 2 / 15

Chapter 2

Porting Pyomo to Python 3.x

We have begun the process of porting Pyomo to support Python 3.x. Specifically, we are working on support for Python 3.2 and
3.3; earlier version of Python 3.x were a bit buggy.

We are currently trying to adapt Pyomo to simultaneously support both Python 2.x and Python 3.x without requiring the use of
conversion scripts (e.g. 2to3). This simplifies the management of the code base, though at the price of some additional complexity
when developing the code.

The following subsections describe various issues that developers need to consider while writing code to ensure portability.
Further details are available in the following online references:

• Porting to Python 3

• Python 3.4 Porting Guide

• Porting Mock to Python 3

• The six Python Package

2.1 Different Types

Python 3 changes some of the fundamental types in Python. The following code provides cross-compatibility for these changes:

try:
unicode

except NameError:
Python 3
basestring = unicode = str
long = int

2.2 Printing

The print statement is a function in Python 3. However, Python 2.6 supports this function, so simple print commands can be
ported easily:

print "Python 2 syntax"
print("Python 3 syntax")

However, more advanced features of the print function are not supported in Python 3. A common issue with printing is the
redirection syntax:

http://python3porting.com/
http://docs.python.org/dev/howto/pyporting.html
http://www.voidspace.org.uk/python/articles/porting-mock-to-python-3.shtml
http://pypi.python.org/pypi/six/

Pyomo Developer Guide 3.1 3 / 15

OUTPUT = open(’filename’,’w’)
print >>OUTPUT, "This works in Python 2","More text"
OUTPUT.close()

In Python 3, this code needs to be changed to use sys.stdout.write():

OUTPUT = open(’filename’,’w’)
sys.stdout.write("This works in Python 2"+" "+"More text"+"\n")
OUTPUT.close()

Note that (a) the comma used in Python 2 needs to be replaced with an explicit space in Python 3, and (b) the write() function
needs to have an explicit end-of-line character provided. (Note that the six.print_ function can also be used for Python 2/3
portability, though this function does work exactly like the Python 3 print function.)

2.3 Exception Management

Python 3 introduces a new syntax of exceptions:

try:
raise Exception()

except Exception as exc:
Current exception is ’exc’
pass

The Python documentation claims that this syntax should work in Python 2.6 or newer. However, it is unclear that early versions
of Python 2.6 supported this syntax (e.g. 2.6.1). The following syntax is guaranteed to work with both Python 2.x and 3.x:

try:
raise Exception()

except Exception:
exc = sys.exc_info()[1]
Current exception is ’exc’
pass

2.4 Importing

The following import is invalid syntax in Python 3:

def f():
from module import *

Additionally, Python 3 treats all forms of imports not starting with . as absolute imports. Thus, Pyomo packages use absolute
imports to ensure portability between Python 2/3. This requires explicit importing of all levels of Pyomo. For example, in
pyomo.core/base, the numvalue.py file uses the import:

from pyomo.core.base.set_types import Reals, Any

instead of the following, which works only in Python 2:

from set_types import Reals, Any

Pyomo Developer Guide 3.1 4 / 15

2.5 Managing API Changes with six

The six package provides a lot of API changes that make it very easy to translate between Python 2 and 3. One key utility of
six is the translation of package names. For example, the StringIO class is now in the io module rather than the StringIO
module. The following syntax is portable between Python 2/3:

from six.moves import StringIO

stringio = StringIO()

Similarly, the xrange function is no longer supported in Python 3 (since the range function now returns a generator). The
following import ensures that xrange can be used portably in Python 2 and 3:

from six.moves import xrange

Another key feature of six is the inclusion of functions that portably manage iteration between Python 2 and 3. Specifically,
the API of dictionaries changed substantially between Python 2 and 3. The dict.iteritems() function is not available in
Python 3, and instead dict.items() returns a generator. This makes it difficult to have efficient code supported in all versions
of Python, so six.iteritems() is provided to provide that portability:

d = {1:’one’, 2:’two’}
for k, v in six.iteritems(d):

print("%d %s" % (k,v))

Similar functions are provide for iterkeys and for advancing iterators (next).

Pyomo Developer Guide 3.1 5 / 15

Chapter 3

Pyomo Library API

3.1 Introduction

This chapter describes the API of Pyomo’s library and functions and classes. This API is focused on the functions and classes
that support the transformation and analysis of Pyomo models.

A key aspect of Pyomo’s library are functors, which are function objects that can be executed like other functions. Pyomo’s
functors provide a unifying interface for Pyomo’s API, and they support the following functionality:

• Functor registration standardizes function definition, which facilitates plug-and-play of the functions in the API.

• The functor docstrings are parsed to support error checking for functor inputs and outputs.

• Functors are globally registered, which allows functors to be created on the fly and enables documentation/enumeration of all
functors in the API.

• Functors can be integrated into formal workflows (using components from pyutilib.workflow)

Thus, functor declarations allow the Pyomo API to be more than a simple library of function calls.

3.2 Declaring Pyomo Functors

Functors in the Pyomo API are declared using the pyomo_api decorator with a Python function. The following example
illustrates the use of this decorator:

@pyomo_api
def f1(data, x=0, y=1):

"""A simple example.

Required:
x: A required keyword argument

Optional:
y: An optional keyword argument

Return:
a: A return value
b: Another return value

"""
return PyomoAPIData(a=2*data.z, b=x+y)

Pyomo Developer Guide 3.1 6 / 15

The f1 function is a normal Python declaration, and the pyomo_api decorator transforms this function into a functor. This
functor can be executed as if it was a function. For example:

data = PyomoAPIData(z=1)
val = f1(data, x=2)

Pyomo functors are required to have an argument that is a container of labeled data, which is treated specially. The container
is required to be a dict or PyomoAPIData class. The PyomoAPIData class generalizes the Python dict class in several
ways. Most notably, an attribute added to an PyomoAPIData object is also added to the underlying dictionary. In the previous
example, the PyomoAPIData object is passed in as the first argument. In fact, Pyomo functors are only allowed to have
one non-keyword argument. Alternatively, a functor can be declared with a data keyword argument, in which case it has no
non-keyword arguments. For example, the functor can be declared as follows

@pyomo_api
def f2(x=0, y=1, data=None):

"""A simple example.

Required:
data: The required data argument
x: A required keyword argument

Optional:
y: An optional keyword argument

Return:
a: A return value
b: Another return value

"""
return PyomoAPIData(a=2*data.z, b=x+y)

and it is evaluated as follows

data = PyomoAPIData(z=1)
val = f2(data=data, x=2)

In fact, this functor can also be evaluated as before:

data = PyomoAPIData(z=1)
val = f1(data, x=2)

Although this creates a syntactic difference between the declaration and formulation of functors, this allows functors to be used
with a common API.

If a dict is passed into a functor to provide the container of labeled data, then the functor converts it to a PyomoAPIData
object before executing the function. Since PyomoAPIData objects are subclasses of dict, this change may be transparent to
the user. However, this is important in contexts where features of PyomoAPIData are used.

The return value of a Pyomo functor is an PyomoAPIData object. However, the return value of the function used to declare
the constructor may be either None, a dict object, or an PyomoAPIData object. If the function returns None or the data
object is returned, then the functor creates an PyomoAPIData object with an element with key data whose value is the
PyomoAPIData object passed into the functor. Otherwise, if an PyomoAPIData object is returned then the functor adds an
element with key data if it does not already exist. If a dict object is returned, then it is converted to an PyomoAPIData
object and processed in the same manner. Consequently, the return value of a Pyomo function is an PyomoAPIData object that
is guaranteed to contain a container of labeled data with key data.

The docstring comments used in these examples are needed to fully specify the API of the Pyomo functor. These docstrings are
needed to properly execute Pyomo functors. The Required, PyomoAPIData, and Return keywords declare blocks where
keyword arguments and return values are described. Although all keywords are declared with a default value, these values are
only used in a functor for the optional arguments. An exception is generated if a required argument to a functor is omitted. The
labeled return values specify the possible outputs of a functor. An exception is generated if a unexpected label for a return value
is specified. When a functor returns without defining a defined return label, then its value is None.

Pyomo Developer Guide 3.1 7 / 15

The Required block can also be used to validate the existence of data that is nested inside of the functor arguments. Consider
the following example, which validates the existence of values in the data and x arguments:

@pyomo_api
def f3(data, x=None):

"""A simple example.

Required:
data.z: A nested required data value
x: A required keyword argument
x.y: A nested required data value

Return:
a: A return value
b: Another return value

"""
return PyomoAPIData(a=2*data.z, b=x.y)

Note that the nested values are assumed to be simple nested attributes of the form a.b.c.d. General purpose tests are not
supported for checking the validity of data, and the test for a nested value simply verifies that it exists and that it is not equal to
None.

These requirements on functors enforce a uniform API for the input and output values. Input values consist of a container
of labeled data along with keyword arguments, and output values have the same form. This consistency facilitates the use of
functors in a larger computational workflows. The incorporation of the container object into the Pyomo functor API allows
keyword arguments to be added in an extensible manner. For example, this feature enables the incorporation of data that is used
by subsequent functors in the computation without requiring an extension of a the APIs of the preceding functors.

Note: The PyomoAPIData class supports a container for labeled data that generalizes the dictionary used for Python nonformal
keyword arguments, which are specified with the syntax **kwd. Nonformal keyword arguments are used in the APIs of other
Python packages (e.g. MatplotLib). The use of PyomoAPIData is motivated by the use of functors in formal computational
workflows.

3.3 The Functor Registry

Declarations of Pyomo functors automatically populate a global registry of the Pyomo API. This registry allows functor objects
to be created on the fly. For example:

g = PyomoAPIFactory(’f1’)

This example illustrates how the functor object g can be created from the registered functor f1. The functor g acts exactly like
f1, and in practice there is little difference between using g and f1. However, functors can be created by name using the factory
PyomoAPIFactory, and thus the user does not need to know the specific Pyomo library in which a functor is defined.

To help organize functors, a namespace option can be specified when declaring the functor. This allows functors to be defined
with the same name in different packages, while distinguishing how they are registered. For example:

@pyomo_api(namespace=’utility’)
def f1(data, x=0, y=1):

"""A simple example.

Required:
x: A required keyword argument

Optional:
y: An optional keyword argument

Return:
a: A return value
b: Another return value

Pyomo Developer Guide 3.1 8 / 15

"""
return PyomoAPIData(a=2*data.z, b=x+y)

The functor f1 is declared within the utility namespace. The f1 object can be used within the python module containing
this declaration. However, this functor is registered as utility.f1 in the registry, so the functor is created as follows:

g = PyomoAPIFactory(’utility.f1’)

Finally, the functor registry allows for the automatic generation of documentation for the Pyomo API. The pyomo command
supports the api subcommand, which generates a simple summary of all functor namespaces and their corresponding functors.
This output looks something like the following:

=================
Pyomo Functor API
=================

pyomo.script Functors

apply_optimizer:

Perform optimization with a concrete instance

apply_postprocessing:
Apply post-processing steps.

apply_preprocessing:
Execute preprocessing files

create_model:
Create instance of Pyomo model.

finalize:
Perform final actions to finish the execution of the pyomo script.

Additionally, the --asciidoc option can be specified to generate a detailed description of the Pyomo API, which is used to
generate this document (see below).

3.4 Functors and Workflow

TODO: Pyomo functors can be tied together into formal workflows that can be executed in an arbitrary manner

3.5 API Notes

The following notes describe further action items that we’ve outlined for the Pyomo API:

• Tasks/WF objects

– Parallelization

– Reuse?

– Push/Pull input/output ports

– Pre/Post events

* Global

* Task-specific (extension point or events?)

– Tasks support extension points

Pyomo Developer Guide 3.1 9 / 15

* Use implements() to define the EP that is supported

• API code review

– Document code review along-side API functions?

• Case studies (and tests)

• Pyomo model transformations

– In-place vs. copies

– Need to clarify semantics

– Active/Frozen models

– Flattening structured models

* Utilities for walking a non-flattened model (iterator?)

– EP’s supported by new components (?)

• Script generation

– Record sequence of calls

– Tracing logic OR auto-scripting

("// Generated with pyomo api on ", datetime.date(2015, 12, 31))

Pyomo Developer Guide 3.1 10 / 15

Chapter 4

Pyomo Functor API

4.1 pyomo.model Functors

4.1.1 simple_preprocessor

This plugin simply applies preprocess actions in a fixed order.

• Required Keyword Arguments:

data
A container of labeled data.

model
A concrete model instance.

• Return Values:

data
A container of labeled data.

4.2 pyomo.repn Functors

4.2.1 compute_ampl_repn

This plugin computes the ampl representation for all objectives and constraints. All results are stored in a ComponentMap named
"_ampl_repn" at the block level.

We break out preprocessing of the objectives and constraints in order to avoid redundant and unnecessary work, specifically in
contexts where a model is iteratively solved and modified. we don’t have finer-grained resolution, but we could easily pass in a
Constraint and an Objective if warranted.

• Required Keyword Arguments:

data
A container of labeled data.

model
A concrete model instance.

• Return Values:

data
A container of labeled data.

Pyomo Developer Guide 3.1 11 / 15

4.2.2 compute_canonical_repn

This plugin computes the canonical representation for all objectives and constraints linear terms. All results are stored in a
ComponentMap named "_canonical_repn" at the block level.

We break out preprocessing of the objectives and constraints in order to avoid redundant and unnecessary work, specifically in
contexts where a model is iteratively solved and modified. we don’t have finer-grained resolution, but we could easily pass in a
Constraint and an Objective if warranted.

• Required Keyword Arguments:

data
A container of labeled data.

model
A concrete model instance.

• Return Values:

data
A container of labeled data.

4.3 pyomo.script Functors

4.3.1 apply_optimizer

Perform optimization with a concrete instance

• Required Keyword Arguments:

data
A container of labeled data.

instance
Problem instance.

• Return Values:

data
A container of labeled data.

opt
Optimizer object.

results
Optimization results.

4.3.2 apply_postprocessing

Apply post-processing steps.

• Required Keyword Arguments:

data
A container of labeled data.

instance
Problem instance.

results
Optimization results object.

• Return Values:

data
A container of labeled data.

Pyomo Developer Guide 3.1 12 / 15

4.3.3 apply_preprocessing

Execute preprocessing files

• Required Keyword Arguments:

data
A container of labeled data.

parser
Command line parser object

• Return Values:

data
A container of labeled data.

error
This is true if an error has occurred.

4.3.4 create_model

Create instance of Pyomo model.

• Required Keyword Arguments:

data
A container of labeled data.

• Return Values:

data
A container of labeled data.

filename
Filename that a model instance was written to.

instance
Problem instance.

model
Model object.

symbol_map
Symbol map created when writing model to a file.

4.3.5 finalize

Perform final actions to finish the execution of the pyomo script.

This function prints statistics related to the execution of the pyomo script. Additionally, this function will drop into the python
interpreter if the interactive option is True.

• Required Keyword Arguments:

data
A container of labeled data.

model
A pyomo model object.

• Optional Keyword Arguments:

Pyomo Developer Guide 3.1 13 / 15

instance
A problem instance derived from the model object.

results
Optimization results object.

• Return Values:

data
A container of labeled data.

4.3.6 process_results

Process optimization results.

• Required Keyword Arguments:

data
A container of labeled data.

instance
Problem instance.

opt
Optimizer object.

results
Optimization results object.

• Return Values:

data
A container of labeled data.

4.3.7 run_command

Execute a function that processes command-line arguments and then calls a command-line driver.

This function provides a generic facility for executing a command function is rather generic. This function is segregated from
the driver to enable profiling of the command-line execution.

• Required Keyword Arguments:

command
The name of a function that will be executed to perform process the command-line options with a parser object.

parser
The parser object that is used by the command-line function.

• Optional Keyword Arguments:

args
Command-line arguments that are parsed. If this value is None, then the arguments in sys.argv are used to parse the
command-line.

data
A container of labeled data.

name
Specifying the name of the command-line (for error messages).

options
If this is not None, then ignore the args option and use this to specify command options.

Pyomo Developer Guide 3.1 14 / 15

• Return Values:

data
A container of labeled data.

errorcode
0 if Pyomo ran successfully

retval
Return values from the command-line execution.

4.3.8 setup_environment

Setup Pyomo execution environment

• Required Keyword Arguments:

data
A container of labeled data.

• Return Values:

data
A container of labeled data.

Pyomo Developer Guide 3.1 15 / 15

Chapter 5

How To Run Tests

5.1 Running Smoke Tests

These commands run the Python Nose utility (nosetests) for each package within the named argument.

To test all of pyomo, use the test.pyomo script. From the pyomo directory, use the command:

bin/test.pyomo

Or from any sub-directory of pyomo, use

lbin test.pyomo

To test pyutilib, use

bin/test.pyutilib

To test just pyomo, from any pyomo sub-directory, use

lbin test.pyomo pyomo.core

There are options for tests (e.g., --cat=all), to see a list of options use the -h or --help option.

5.2 Interpreting Output

There are two modes of "not-pass:" FAIL and ERROR. FAIL is an assertion failure. ERROR is a crash.

	Overview
	Porting Pyomo to Python 3.x
	Different Types
	Printing
	Exception Management
	Importing
	Managing API Changes with six

	Pyomo Library API
	Introduction
	Declaring Pyomo Functors
	The Functor Registry
	Functors and Workflow
	API Notes

	Pyomo Functor API
	pyomo.model Functors
	simple_preprocessor

	pyomo.repn Functors
	compute_ampl_repn
	compute_canonical_repn

	pyomo.script Functors
	apply_optimizer
	apply_postprocessing
	apply_preprocessing
	create_model
	finalize
	process_results
	run_command
	setup_environment

	How To Run Tests
	Running Smoke Tests
	Interpreting Output

